We generate a 3D SDF and a texture field via two latent codes. We utilize DMTet to extract a 3D surface mesh from the SDF, and query the texture field at surface points to get colors. We train with adversarial losses defined on 2D images. In particular, we use a rasterization-based differentiable renderer to obtain RGB images and silhouettes. We utilize two 2D discriminators, each on RGB image, and silhouette, respectively, to classify whether the inputs are real or fake. The whole model is end-to-end trainable.
数据统计
数据评估
本站Xcron提供的NVIDIA都来源于网络,不保证外部链接的准确性和完整性,同时,对于该外部链接的指向,不由Xcron实际控制,在2024年4月15日 下午12:32收录时,该网页上的内容,都属于合规合法,后期网页的内容如出现违规,可以直接联系网站管理员进行删除,Xcron不承担任何责任。
相关导航
Give players groundbreaking game mechanics, dynamic NPCs, and worlds that evolve with each action. Whether you're looking to unlock novel gameplay, create content at scale, improve player immersion, or future proof your AI infrastructure, Inworld helps uplevel your game development with AI.